

Expanding your risk management toolbox - onfarm tools for water quality and pathogen monitoring (GF2 0251 FCO-HMGA)

> FCO Research Conference February 1, 2017

Objective:

Develop PRACTICAL methods that growers can use to:

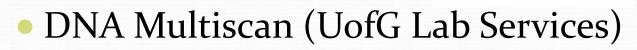
- Track microbial water quality manage RISK
- Monitor water treatment system performance
- Proactively manage water quality throughout the whole production system

Concerns for Greenhouse Flower Growers

- Plant pathogens going into production areas from fresh or recycled water
- Treatment system performance

Concerns for Vegetable & Herb Growers

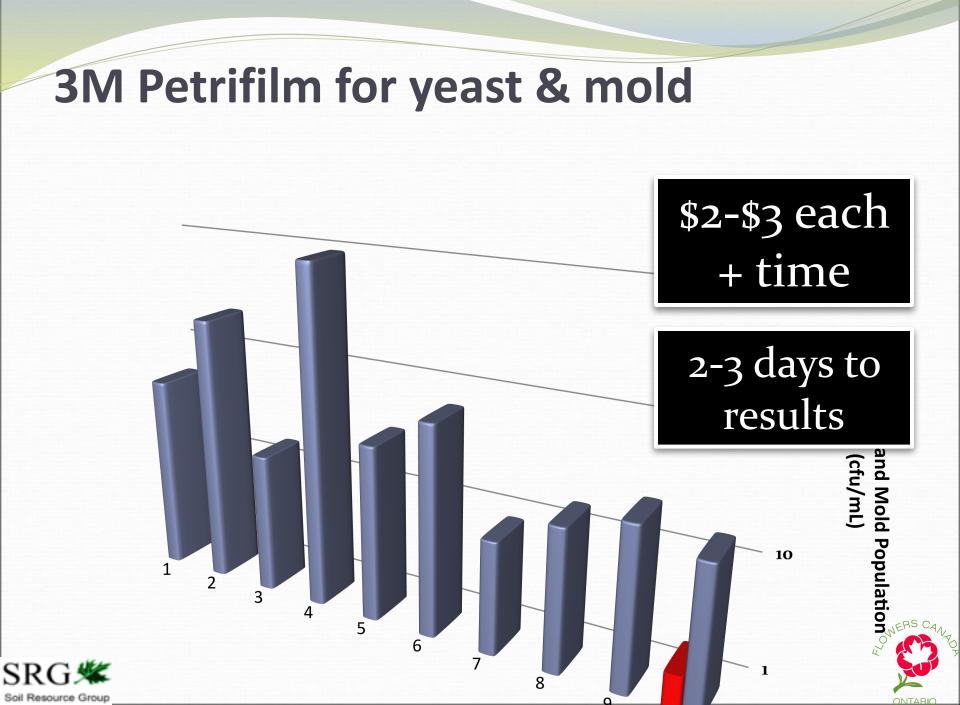
- Food safety in production and processing
- Regulations
- Plant pathogens going back onto cropland



General water quality: Total aerobic bacteria

Tools for fungal plant pathogens

- 3M Petrifilm Yeast & Mold
 - Standard plating methods
- Sani-Check dipslides
- AgDia test strips


DNA Multiscan testing

Site code	F2														
Crop	Cut mixed														
System	Recirculating														
Treatment	UV								-						
		Un	itreate	ed rec	irc. wa	ater			Irea	ated w	/ater				
DNA Multisca	an scores														
		Leach or Runoff water - untreated							Treated						
Sample Code		F2-3	F2-3	F2-3	F2-3	F2-3		F2-4	F2-4	F2-4	F2-4	F2-4			
Sample Name		Cistern 1	Cistern 1	Cistern 1	Cistern 1	Cistern 1		Cistern 2	Cistern 2	Cistern 2	Cistern 2	Cistern 2			
Sampling Date		14-May-12	5-Jun-12	5-Jul-12	1-Aug-12	15-Aug-12		14-May-12	5-Jun-12	5-Jul-12	1-Aug-12	15-Aug-12			
	Botrytis cinerea	1	0	0	0	0		1	1	0	0	0			
	Fusarium oxysporum	1	0	0	1	1		0	1	1	1	0			
	F. solani	1	0	0	1	1		1	1	1	1	1			
	Phytophthora sp.	1	0	0	1	0		2	0	0		0			
	P. cactorum	0	0	0	0	0		0	0	0		0			
	P. capsici	0	0	0	0	0		0				0			
	P. cinnamomi	0	0	0	0	0		0							
	P. cryplogea	0	0	0	0	0		0		0	PS!	0			
	P. drechsleri	0	0	0	0	0		0							
	P. fragariae	0	0	0	0	0		0	0			0			
	P. infestans	0	0	0	0	0	_	0	0		0	0			
Target	P. nicotianae	0	2	0	0	0	_	0	1	0	0	0			
Organism	Pythium sp.	3	1	1	1	1		4	3	1	1	0			
Organisin	P. aphanidermatum	0	0	0	0	0	_	0	0	0	0	0			
	P. dissotocum	6	1	2	3	3		6	8	1	1	0			
	P. irregulere	1	0	0	0	0	-	0	0	0	0	0			
-102	P. polymastum	0	0	0	0	0	-	0	1	0	0	0			
	P. sylvaticum	0	2	0	0	0	-	0	-	0	0	0			
	P. ultimum	1	0	0	0	0	-		0	0	0	0			
	Rhizoctonia solani	0	0	0	0	0	_	0			1	0			
	Sclerotinia sp.	0	0	0	0	0	_	0	-			s for			
	Thielaviopsis basicola	0	0	0	0	0	_	0				5 101			
	Verticillium albo-atrum	0	0	0		0	-	0							
	Verticillium dahliae	0	0	0		0	-	0		110	esul	+c			
	V. dahliae (ver longisporum)	0	0	0	0	0		0			<u>-5ui</u>				

Plant pathogen removal by woodchip bioreactor – DNA Multiscan testing

	Untreated Sump Water								Woodchip Bioreactor Treated						
Target Organism	22 May 12	5 June 12	5 July 12	1 Aug 12	15 Aug 12	12 June 13	5 Sept 13	22 May 12	5 June 12	5 July 12	1 Aug 12	15 Aug 12	12 June 13	5 Sept 13	
Botrytis	2	3	1	0	1	0	0	0	0	0	0	0	0	0	
Fusarium	0	1	1	1	2	1	1	0	0	0	0	0	0	1	
Phytophthora	0	1	0	0	0	1	0	0	0	0	0	0	1	0	
Pythium	0	5	4	5	3	10	1	0	0	0	0	0	1	0	
Rhizoctonia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Olpidium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sclerotinia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Thielaviopsis	0	0	0	0	0	0	0			ch	0				
Verticillium	0	0	0	0	0	0	0	$JI/\gamma^{-}JZZ\gamma$ (a)			0				

Project Cooperators

Cooperator	Crops	Irrigation systems	Recirc ?	treatment
Greenhouses (7)	□Cut □Potted □Bedding □Vegetable	 Flood floor, trough, Dutch tray Drip Overhead 	YES	 UV (5) Cloth filter(7) Peroxide (2) Copper Chlorine dioxide ECA Ozone Woodchip Bioreactor Constructed wetland
Vegetable growers/ Washers (8)	□Carrots, beets, parsnips □Greens □Asian veg	 Overhead irrigation Wide range of washing systems 	Some	Nothing to everything!

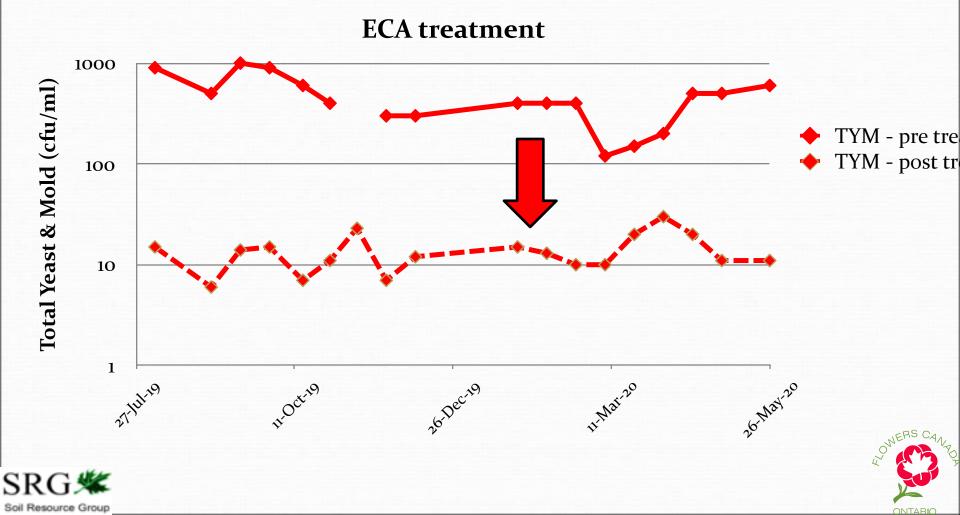
Results -

Toolbox for Microbial water quality assessment

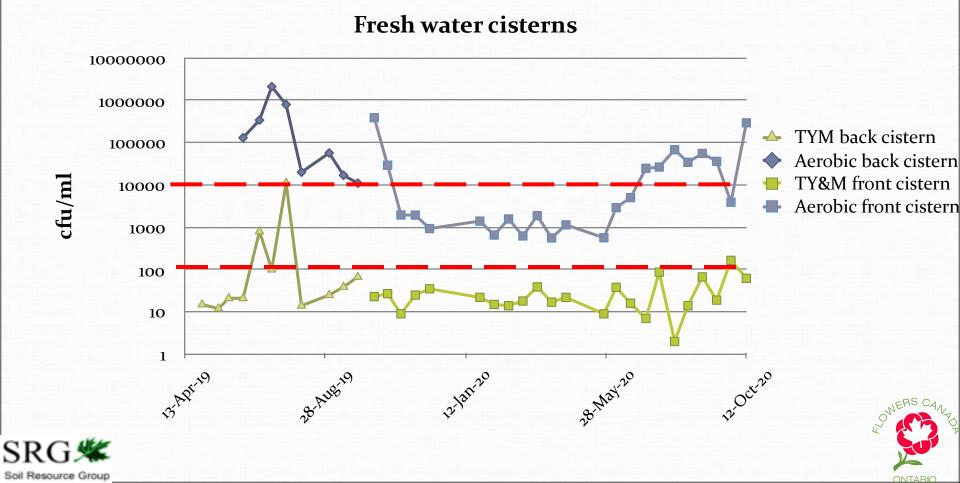
- **3M Petrifilms** a measure of RISK
 - Total yeast & mold risk of fungal pathogens
 - **Total aerobic plate count** (bacterial) general water quality; risk of biofilm development in pipes and drippers
 - *E.coli* and total coliforms (only if food safety is a concern)

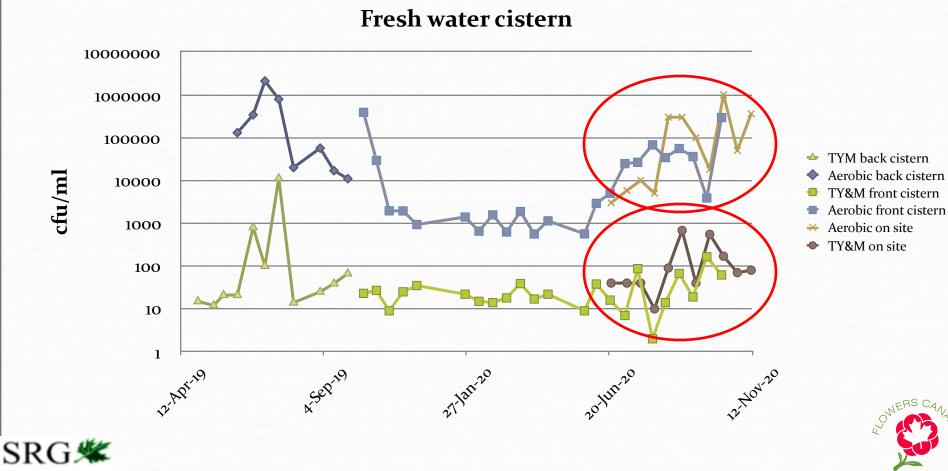
• **DNA multiscan** – identifies WHAT is there

Results -

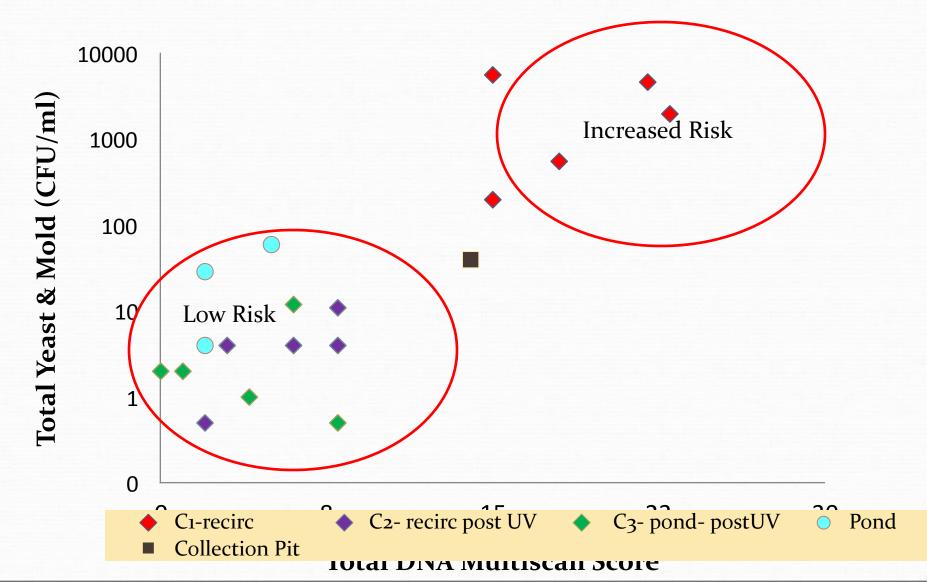

Baseline microbial water quality data (2 years)

- treatment system performance and general water management
 - 7 greenhouse systems
 - 8 vegetable production and processing systems
- >3000 Petrifilm analyses!!

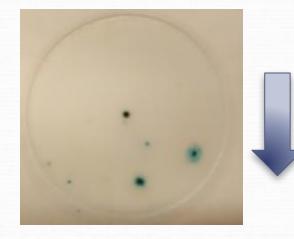



Typical results: treatment system performance

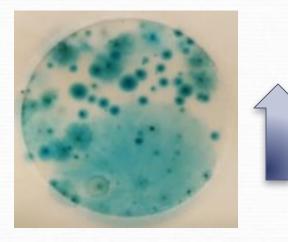
Typical results: changes over season and management



On-site comparisons

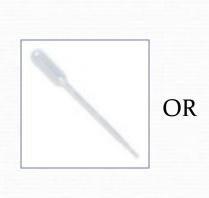


Soil Resource Group

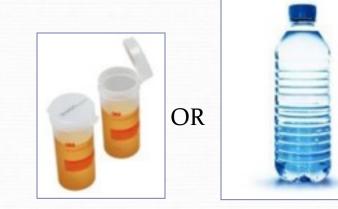

Implications for growers

RISK Determination

- Low counts
- Consistent results
- Treatment system OK
- Scouting looks OK
- Track changes in levels with water sources changes (e.g. pond vs roof)



- High counts
- Inconsistent results
- Unusual spikes in data
- Send for DNA multiscan?
- Extra scouting for issues?
- Check/maintain treatment equipment?
- Clean tanks, including feed tanks



Equipment alternatives

\$159 at Amazon.ca

\$373 at Amazon.com

OR Room temperature for Aerobic and Y&M

Other parameters

- Test strips/meters for sanitizer residuals and other chemicals
 - peroxide
 - chlorine free & total
 - chlorine dioxide
 - pH
 - ammonia
 - nitrate
 - phosphate

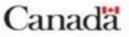
Next Steps

- Workshops February:
 - Niagara area
 - Holland Marsh area
- Ordering supplies and equipment through FCO
 - SOON please!!!!!

Contact us:

- Ann Huber, SRG; ahuber@srgresearch.ca
- Jeanine West, FCO; jeanine@fco.ca

Acknowledgements


- Flowers Canada (Ontario) Inc.,
- Holland Marsh Growers Association & LSGBCUF project,
- Steering Committee Members, and
- Our Growers!!

This project was funded in part through *Growing Forward 2 (GF2)*, a federal-provincial-territorial-initiative. The Agricultural Adaptation Council assists in the delivery of *GF2* in Ontario.

Growing Forward 2

ntario

